POSTGRADUATE INSTITUTE OF AGRICULTURE
UNIVERSITY OF PERADENIYA

GUIDELINES FOR PREPARATION
OF
M.Sc., M.Phil. AND Ph.D. THESIS

2022
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Background Information</td>
<td>01</td>
</tr>
<tr>
<td>2. Submission of Thesis</td>
<td>01</td>
</tr>
<tr>
<td>2.1 Copyright</td>
<td>02</td>
</tr>
<tr>
<td>3. Contents of the Thesis</td>
<td>02</td>
</tr>
<tr>
<td>3.1 Title page for M.Phil/Ph.D. degrees</td>
<td>02</td>
</tr>
<tr>
<td>3.2 Signature page</td>
<td>02</td>
</tr>
<tr>
<td>3.3 Declaration page</td>
<td>02</td>
</tr>
<tr>
<td>3.4 Abstract page</td>
<td>02</td>
</tr>
<tr>
<td>3.5 Acknowledgement/s</td>
<td>03</td>
</tr>
<tr>
<td>4. Paper and Printing</td>
<td>03</td>
</tr>
<tr>
<td>4.1 Type of paper to be used</td>
<td>03</td>
</tr>
<tr>
<td>4.2 Printing</td>
<td>03</td>
</tr>
<tr>
<td>4.3 Margins of pages</td>
<td>03</td>
</tr>
<tr>
<td>4.4 Cover page</td>
<td>04</td>
</tr>
<tr>
<td>4.5 Spine</td>
<td>04</td>
</tr>
<tr>
<td>4.6 Numbering of pages</td>
<td>04</td>
</tr>
<tr>
<td>5. Listing Order of the M.Sc./M.Phil/Ph.D. Thesis</td>
<td>04</td>
</tr>
<tr>
<td>5.1 Prepatory page</td>
<td>04</td>
</tr>
<tr>
<td>5.2 Main body of thesis</td>
<td>05</td>
</tr>
<tr>
<td>5.3 Layout of Chapters</td>
<td>05</td>
</tr>
<tr>
<td>6. References</td>
<td>09</td>
</tr>
<tr>
<td>6.1 Harvard System or Author and Year System</td>
<td>09</td>
</tr>
<tr>
<td>6.2 In-text citations</td>
<td>09</td>
</tr>
<tr>
<td>6.3 Journal articles with single author</td>
<td>10</td>
</tr>
<tr>
<td>6.4 Journal articles with two authors</td>
<td>10</td>
</tr>
<tr>
<td>6.5 In-text citations with more than two authors</td>
<td>10</td>
</tr>
<tr>
<td>6.6 Articles not yet published but in press</td>
<td>10</td>
</tr>
<tr>
<td>6.7 Books (with author)</td>
<td>10</td>
</tr>
<tr>
<td>6.8 Books (without author)</td>
<td>11</td>
</tr>
<tr>
<td>6.9 Chapters in Edited Books</td>
<td>11</td>
</tr>
<tr>
<td>6.10 Monographs</td>
<td>11</td>
</tr>
<tr>
<td>6.11 Proceedings of conferences, congresses, Symposia and Case studies</td>
<td>11</td>
</tr>
<tr>
<td>6.12 Thesis</td>
<td>12</td>
</tr>
</tbody>
</table>
6.13. Internet sources 12
6.14 Patents 12

7. Illustrations, Tables and Plates 12
 7.1 Illustrations 12
 7.2 Tables 13
 7.3 Plates 13

8. Scientific Names of Plants and Animals 13
 8.1 Examples of botanical names 13
 8.2 Examples of zoological names 14

9. Abbreviations 14
 9.1 Examples of commonly used abbreviations 14
 9.2 Examples of abbreviations without definition 14
 9.3 Examples of SI derived abbreviations expressed in terms of base units 15

10. Units of Physical Quantities 15
11. Mathematical Formulae 15
12. Chemical Formulae and Nomenclature 15
13. Level of Statistical Significance 15
14. Specimen Pages 16
 14.1 Title page for Ph.D. Degree 16
 14.2 Title page for M.Phil. Degree 17
 14.3 Title page for M.Sc. Degree 18
 14.4 Signature page of examiners and Director, PGIA 19
 14.5 Declaration page 20
 14.6 Abstract page 21
 14.7 Abstract page for CD 22
 14.8 Table of Contents 23
 14.9 Outer Cover of thesis 35
 14.10 Spine of the outer cover of the thesis 36
GUIDELINES FOR PREPARATION OF M.Sc., M.Phil. AND Ph.D. THESIS

1. BACKGROUND INFORMATION

Every candidate applying for a Degree of Doctor of Philosophy (Ph.D.) shall submit a thesis embodying the research giving evidence of the originality, ability of independent critical analysis and discovery of new facts.

The candidates applying for the Degree of Master of Science (M.Sc.) and Master of Philosophy (M.Phil.) shall submit a thesis to include results of research which gives an indication of the student’s ability to conduct research with some supervision.

- A candidate should include his/her list of publications resulted during the degree programme at the end of appendices and should annex any of his/her research if already published in journals as supporting documents confirming his ability to interpret, analyze and present scientific papers.
- Any candidate who successfully completes the degree program and intends to publish the thesis or a part of it is required to obtain permission in writing from the Director of the Postgraduate Institute of Agriculture (PGIA).

Note: Students are requested to consult his/her supervisor and Chairperson of the Board of Study before commencing the preparation of the thesis.

2. SUBMISSION OF THE THESIS

Copies of the final draft of the thesis (Ph.D- 03 copies) and (M.Sc. / M.Phil- 02 copies) shall in the first instance be submitted by the candidate to the Director of the Postgraduate Institute of Agriculture. As the Examination Committee may suggest revisions in the content of the thesis, these copies shall be unbound but paginated. Student should submit the thesis for evaluation along with the filled application for thesis defence examination which is available in the PGIA office/website.

When the thesis has been accepted by the Examination Committee and corrected or revised satisfactorily, two (02) bound copies of the thesis shall be submitted by the candidate to the Director of the Institute for the signatures of the Examination Committee. One copy shall become the property of the institute, while the second copy will be returned to the candidate.
At the same time, the candidate should submit 2 CDs to the PGIA. One CD should include, Abstract (specimen 14.6) and (Title+ Abstract+Thesis) as PDF files which will be sent to the Library. The other CD should include 3 page document which include a Photograph of the student, Name, Degree, Address, Telephone No., Title, Senior Supervisor/Supervisors in the first page, a summary in 200 words in the second page and a summary of the research in laymen language in the third page which will be used for Newsletter/PGIA.

2.1 Copyright

The thesis becomes the property of the institute, but abstracting journals may reprint abstracts or translations of them provided that written permission has been taken from the Director of the institute.

3. CONTENT OF THE THESIS

3.1 Title Page for M.Sc./M.Phil/PhD Degrees: The title of the thesis should be short, concise, informative and descriptive of the research done and it should be displayed at the top of the title page. The title should be presented in bold, uppercase letters and center aligned. If the title includes any scientific names of organisms, they should be written in lower case italics, except for the first letter of the genus which is capitalized.

The title page includes the Title of the thesis (M.Sc./M.Phil/Ph.D) candidate’s fullname in bold, the Degree for which the candidate is submitting the thesis, the name of the institute and the month and year of submission.

(Specimens 14.1, 14.2 & 14.3)

3.2 Signature page should indicate the approvals of the examiners and the Director of the Institute.

(Both the title page and the signature page should be obtained from the office of the Director).

(Specimen 14.4)

3.3 Declaration Page: The thesis should have a Declaration signed by the candidate and certified by his/her supervisor/s and the Director of the institute. The declaration should have the PGIA date stamp both at the initial and final submission of the thesis.

(Specimen 14.5)

3.4 Abstract Page: An abstract of the thesis of not more than six hundred words should be included in the thesis and the typing should be with double spacing (Specimen 14.6)

Abstract for CD should include the Title of the project, candidate’s name, PGIA affiliation and address. The abstract should not exceed 350 words and typed single spaced on a single page.
and preferably as a single paragraph. Abstract should outline the justification, methodologies used, significant findings and conclusions. Do not include keywords (Specimen 14.7)

3.5 Acknowledgement/s: The candidate shall state under the Acknowledgement/s any assistance obtained from others such as in designing and conduct of experiments, construction of apparatus, calibration of equipment, data analysis, guidance and supervision in the preparation of the thesis and any sources from which financial support have been received for the research project.

4. PAPER AND PRINTING

4.1 Type of paper to be used

Clear white good quality A4 size (210mm x 297mm) paper having at least 80 gsm should be used for the final two copies of the thesis. Only one type of paper should be used throughout the thesis, however papers of different quality and sizes may be used for illustrations, maps etc. as may be necessary. Photographic plates are allowed for charts and diagrams.

4.2 Printing

All pages of the thesis should be computer printed only on one side of the page using Times New Roman (font size 12) with double spacing.

4.3 Margins of pages

The margins of each page should be maintained as follows: left - 3.7 cm, right 2.5cm, top and bottom 3.5 cm. The right margin should be 2.0 cm after binding is over. Therefore it is advisable to keep 2.5 cm at the time of typing.
4.4 Cover page: Official copies of the thesis should have a green hard bound outer cover with title, authors’ full name, degree and year printed in gold. The cover of the thesis should stand at 21.5 cm x 30.2 cm in the finally bound position. (Specimen 14.9). (Times New Roman, font size 14)

4.5 Spine: The spine of the hard bound copy of the thesis should carry the name of the candidate with initials, name of the degree and the year of award, from bottom upwards in that order leaving 2.5 cm space on either end. (Specimen 14.10). (Times New Roman font size 12)

(Rexene for binding is available in the Office of the Director of the institute).

4.6 Numbering of pages

Each page in the thesis should be numbered in consecutive order including illustrative material.

From Abstract to the Appendices (Abstract, Acknowledgements, Table of Contents, List of Tables, List of Figures, List of Plates and List of Abbreviations) should be numbered single-line using lower case in Roman numerals at the top of each page.

Commencing from the beginning of the main body of the thesis (Chapter 1 to last page to the end of the thesis should be numbered in Arabic numerals at the top center of each page. The page that commences Chapters/ Abstract/ Acknowledgements/Table of Contents/ List of Tables/ List of Figures/ List of Plates/ List of Abbreviations/ Appendices should be left without numbering but numbering should be continued from the next page.

5. LISTING OF THE ORDER OF ITEMS IN M.Sc./M.Phil./Ph.D THESIS

5.1 Prepatory Pages

Title page
Declaration page
Abstract page
Acknowledgement/s
Table of Contents
List of Tables
List of Figures
List of Plates
List of Abbreviations
5.2 Main body of the thesis

The main body of the thesis shall constitute several Chapters (e.g., Chapter 1, Chapter 2 etc). Each chapter may have several subtitles listed under the main title and these will be shown as Chapter 1.1.1, Chapter 1.1.2 etc.

Each Chapter shall have a title displayed in upper case bold type letters with Arabic numerals (e.g., CHAPTER 1, CHAPTER 2) followed by the title in bold type set in Times New Roman font size 14. Both the Chapter number and the Title should be centered. Sub titles shall be printed in bold type letters (Times New Roman font size 12). Proper spacing between Chapter number, Chapter title, sub titles and between paragraphs should be maintained throughout the thesis. The text in the thesis should be Times New Roman font size 12 with double spacing (see the example at the end).

5.3 Layout of Chapters

Lay out of Chapters could be arranged in two methods. You can use either first or second method based on your preference.

First Method

CHAPTER 1

INTRODUCTION

1.1. Justification and Background to the proposed research

1.2. Current status

1.3. Objectives

1.3.1. General objectives

1.3.2. Specific objectives

CHAPTER 2

LITERATURE REVIEW

2.1. History of Salmonella

2.2. Nomenclature of Salmonella

2.3. Pathogenesis of Salmonella

2.4.

CHAPTER 3
MATERIALS AND METHODS

3.1. Isolating and serotyping Salmonella from broiler chicken samples
3.2. Detection of virulent genes and quantification of virulence gene expression
3.3.

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Expression of virulent genes in Salmonella isolates
4.2. Presence of antimicrobial resistant genes
4.3. Biofilm formation on different surfaces

CHAPTER 5

CONCLUSIONS

REFERENCES

APPENDICES

APPENDIX I Publication I
APPENDIX II Publication II

Appendices- These include sets of data not directly required to interpret/explain the project work/outcomes which if necessary could be easily accessible in the Appendices.

Published journal articles arising from the thesis could be attached as Appendices.

Second Method

ORGANIZATION OF THE THESIS (Brief description on the layout of the thesis)

CHAPTER 1

INTRODUCTION

1.1. Aquatic Resources of Sri Lanka
1.2. Malwathu Oya

1.3. Objectives

1.3.1. General objectives

1.3.2. Specific objectives

CHAPTER 2

LITERATURE REVIEW

2.1. Global Status of Water

2.2. Threats to Lentic and Lotic Waters

2.3. River Substrates

2.4.

CHAPTER 3

NATIVE FISH SPECIES IN UPPER MALWATHU OYA

3.1. Introduction

3.1.1. Specific Objectives

3.1.2.

3.2. Material and Methods

3.2.1. Selection of Study Area

3.2.2. Determination of River Length

3.2.3.

3.3. Results and Discussion

3.3.1. Fish species in upper Malwathu Oya

3.3.2. Relative Abundance of Native Fish in Upper Malwathu Oya

3.3.3. Distribution of Native Fish in upper Malwathu Oya

3.3.4.

3.4. Conclusions

CHAPTER 4
EFFECT OF WATER QUALITY ON COHABITING NATIVE FISH IN UPPER MALWATHU OYA

4.1. Introduction

4.1.1. Specific Objectives

4.2. Material and Methods

4.2.1. Sampling Sites in Upper Malwathu Oya

4.2.2. Collection of Fish Samples

4.2.3. Chemical Analysis

4.3. Results and Discussion

4.3.1. Seasonal Changes in pH

4.3.2. Spatial Changes in pH

4.4. Conclusions

CHAPTER 5

GENERAL DISCUSSION

5.1. Threats to Upper Malwathu Oya

5.1.1. Water Quality

5.1.1.1. Recommendations to Improve Water Quality

5.1.2. River Parameters

5.1.2.1 Recommendations to Promote the Upstream Movement of Fish

5.1.3. Arsenic and Cadmium

5.1.3.1. Recommendations to Mitigate the Impacts of Arsenic and Cadmium

CHAPTER 6

CONCLUSIONS

REFERENCES

APPENDICES

APPENDIX I Publication I

APPENDIX II Publication II
6. REFERENCES

6.1 Harvard System or Author and Year System

References shall be cited using the Harvard referencing style or Author-Year referencing style. All references in the text should be included at the end of the thesis in the References section. The references should be arranged in alphabetical order at the end of the thesis and in chronological order in the text. If several papers by the same author/s are cited. Use a, b, etc. after the year to distinguish papers published by the same author/s in the same year.

Examples:

If the same source is cited in the previous reference and no other work has been quoted in between same source could be used in the next reference without repeating the names to save space.

References should be composed in the following order: Author/s names with initials after surname, Year of publication (in parenthesis), Title of the article, Name of the journal, Volume, Number (in parenthesis), Number of pages.

Example: Reference of a full article:

To save space, Journal references could be abbreviated according to the List of Journal Title World Abbreviations, British Standards Institution (BS 5605,1978).

Example: An abbreviated Journal article

6.2 In-text citations

In-text citations, up to two authors, use all authors names and the year, if more than two authors, use after the last name of the first author et al.; (meaning and others) but names of all authors should appear in the References list at the end of the thesis.

Some examples are given below to illustrate the recommended format of the Author-Year System.
Examples of in-text citations:

In Indonesia Gliricidia is used as the sole shade tree (Siebel, 1987). Sivapalan (1993) reported that Gliricidia grown under mid country tea provided 20kg/ha green matter yield. Seneviratne et al. (2011) identified shifting cultivation as a wasteful farming practice. Recent studies (Silva and Perera, 2016) have shown that the actual value is higher (Senaratne et al., 1995; Stowell, 2012).

6.3 Journal articles with single author:

6.4 Journal articles with two authors

6.5 Journal articles with more than two authors

6.6 Articles not yet published but in Press

6.7 Books (with author)

6.8 Books (without author)

6.9 Chapters in Edited Books

6.10 Monograph

6.11 Proceedings of Conferences, workshops, Congresses, Symposia and Case Studies

6.12 Thesis

6.13 Internet sources

Thesis (website):

Journal article (online database or website):

6.14 Patents

7. ILLUSTRATIONS, FIGURES, TABLES AND PLATES

7.1 Illustrations: Drawings, figures, maps should be clearly printed and borders should not be present around the illustrations. The titles of all figures should be numbered in Arabic numerals and placed at the bottom using Times New Roman font size 12 and double spaced if there is more than one line. In maps, information such as coordinates, linear scale, directive arrow and index map showing the locality of area should be provided. A legend for the figures and statistical significance should be given. They should be placed in an appropriate position in the text.
Eg: **Figure 3.3. Effect of fertilizer on grain yield**

(Times New Roman, Font size 12, bold)

7.2 **Tables**: Tables must be self-explanatory and should not represent the data given elsewhere in the text. Only the relevant data should be presented in tables. Tables should be placed close to the text and no vertical lines should be used. The titles of tables should be numbered and placed at the top of the table. If the volume of the data is too large, consider placing them as appendix tables.

Eg: **Table 3.4. Grain yield variations in rice**

(Times New Roman, Font size 12, bold)

7.3 **Plates**: Plates should be included when they are essential for the understanding of the content in the text. They should be clear, glossy in colour and of high quality.

Eg: **Plate 5. Commercial unit for dendro power generation in Sri Lanka**

(Times New Roman, Font size 12, bold)

Note: Footnotes may be placed at the bottom of the Figures, Tables and Plates to cite sources or explain author’s comments.

8. **SCIENTIFIC NAMES OF PLANTS AND ANIMALS**

Scientific names of plants and animals should be presented in *italics* with the authority in capitals.

In the first citation genus, species and authority shall be given (Eg: *Oryza sativa* L), in later citations generic name should be abbreviated (Eg: *O. sativa* L)

8.1 **Examples of botanical names**

<table>
<thead>
<tr>
<th>Rice</th>
<th>Oryza sativa L</th>
<th>Gliricidia</th>
<th>Gliricidia sepium (Jacq) Kunth ex Walp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfruit</td>
<td>Artocarpus heterophillus L</td>
<td>Cardamom</td>
<td>Elattaria cardamomum Maton (Thw)</td>
</tr>
<tr>
<td>Chilli</td>
<td>Capsicum annum L</td>
<td>Tea</td>
<td>Camellia sinensis L</td>
</tr>
</tbody>
</table>

13
8.2 Examples of zoological names

Coconut rhinoceros beetle - *Oryctes rhinoceros* L
Coconut red palm weevil - *Rhynchophorus ferrugineus* Oliver
Coconut black headed caterpillar - *Opisina arenosella* Walker
Coconut mite - *Aceria guerreronis* Keifer

9. ABBREVIATIONS

Abbreviations, the shortened form of a word are commonly used when citing references according to the British Standards Institution BS 56051978.

If unconventional terms are used, they should be presented in detail in the first citation. Eg; dry zone (DZ), Mahawel Development Authority (MDA), Department of Agriculture (DOA)

9.1 Common examples of Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>Anon</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Abbre</td>
</tr>
<tr>
<td>Bulletin</td>
<td>Bull</td>
</tr>
<tr>
<td>Conference</td>
<td>Conf</td>
</tr>
<tr>
<td>Experimental</td>
<td>Exp</td>
</tr>
<tr>
<td>Institute</td>
<td>Inst.</td>
</tr>
<tr>
<td>Organic</td>
<td>Org</td>
</tr>
<tr>
<td>Pathology</td>
<td>Pathol</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Proc</td>
</tr>
<tr>
<td>Science</td>
<td>Sci</td>
</tr>
<tr>
<td>Symposium</td>
<td>Symp</td>
</tr>
</tbody>
</table>

9.2 Examples of Abbreviations used without definition

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>ave</td>
<td>Concentration</td>
<td>concn</td>
</tr>
<tr>
<td>Height</td>
<td>ht</td>
<td>molecular weight</td>
<td>mol. wt</td>
</tr>
<tr>
<td>Number</td>
<td>No.</td>
<td>Specific gravity</td>
<td>sp.gr</td>
</tr>
<tr>
<td>Temperature</td>
<td>temp</td>
<td>Volume</td>
<td>vol</td>
</tr>
<tr>
<td>Experiment</td>
<td>expt</td>
<td>Diameter</td>
<td>diam</td>
</tr>
<tr>
<td>Week</td>
<td>wk</td>
<td>Weight</td>
<td>wt</td>
</tr>
<tr>
<td>Length</td>
<td>length m</td>
<td>Year</td>
<td>yr</td>
</tr>
</tbody>
</table>
9.3 Examples of SI derived units expressed in terms of base units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>square meter</td>
<td>m²</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic meter</td>
<td>m³</td>
</tr>
<tr>
<td>Speed, velocity</td>
<td>meter per second</td>
<td>m/sec</td>
</tr>
<tr>
<td>Density, mass density</td>
<td>kilogram per cubic meter</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Other abbreviations/acronyms should be spelled out when first used.

10. UNITS OF PHYSICAL QUANTITIES

Use the International System of Units (SI) and keep a single space between two types of units.

E.g.: kg m J mol⁻¹ K⁻¹ kg m⁻³

11. MATHEMATICAL FORMULAE

All mathematical formulae should be typed with symbols in correct alignment and adequately spaced; vectors should be indicated by vertical lines.

12. CHEMICAL FORMULAE AND NOMENCLATURE

12.1 Valence of ions can be denoted as Ca²⁺ and CO₃²⁻

12.2 Nomenclature: Use IUPAC (International Union of Pure and Applied Chemistry) nomenclature

13. LEVEL OF STATISTICAL SIGNIFICANCE

In reporting experimental data, the digits that are not significant should not be used (do not keep digits beyond the precision of the scale of the instrument).

E.g.: 4.6567 to be reported as 4.66 if the scale used is precise up to the second decimal place.

The level of significance could be expressed as \(P<0.05 \)
USE OF EVAPORATIVE WATER COOLING (EWC) IN GRINDING CHILLI (*Capsicum annum* L.)

(Times New Roman, font size 14, bold)

By

HEWA KAPUGE BUDDIKA CHAMARA

(Times New Roman, font size 14, Bold)

Thesis (Times New Roman, font size 12)

submitted for the degree of

DOCTOR OF PHILOSOPHY (Times New Roman, 12, bold)

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE

of the

UNIVERSITY OF PERADENIYA

PERADENIYA

OCTOBER 2021

(Times New Roman, font size 12, bold)
IMPACT OF USERS’ TECHNOLOGY READINESS AND PERCEIVED VALUE ON MOBILE PHONE ENABLED INTERNET USAGE

(Times New Roman, font size 14)

By

ALUTHYKUMBURA MUDIYANSELAGE AMILA SHANIKA BANDARA

(Times New Roman, font size 14)

Thesis
Submitted in partial fulfillment of the requirements
for the degree of
MASTER OF PHILISOPHY
in the
POSTGRADUATE INSTITUTE OF AGRICULTURE
of the
UNIVERSITY OF PERADENIYA
PERADENIYA

FEBRUARY 2021
(Times New Roman, font size 12)
THREE-WAY ANALYSIS METHODS TO DETECT PANEL DISCONSENSUS IN TEA SENSORY EVALUATION

By

WANNAKUWATHTHA MITIWADUGE DESHA RAJNI FERNANDO

Thesis
Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN BIO-STATISTICS

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE
of the

UNIVERSITY OF PERADENIYA
PERADENIYA

JANUARY 2021
SPECIMEN 14.4- SIGNATURE PAGE-M.Sc./M.Phil./Ph.D THESIS

Approved:

…….(Signature)……..

……. (Name)……………….

…………..(Date)…………

Examiner 1

…….(Signature)……..

……. (Name)……………….

…………..(Date)…………

Examiner 2

…….(Signature)……..

……. (Name)……………….

…………..(Date)…………

Examiner 3

…….(Signature)……..

……. (Name)……………….

…………..(Date)…………

Director
DECLARATION

I do hereby declare that the work reported in this thesis was exclusively carried by me under the supervision of ………………………………………………………………………………….

It describes the results of my own independent research except where due reference has been made in the text. No part of this thesis has been submitted earlier or concurrently for the same or any other degree.

……………………………………..……………………………………..
Date Signature of the candidate

(Signature).........(Signature).........

 (Name) (Name)

Senior Supervisor Supervisor

Date:................. Date:.................
ABSTRACT

The primary objective of this study was to investigate the impact of users’ technology readiness (TR) and perceived value (PV) on mobile phone enabled internet usage. User’s TR has been defined as the people’s propensity to embrace and use new technologies for goals at home and work and measured using the Technology Readiness Index2.0. Five dimensions of PV were used were: Utilitarian value, Hedonic value, Uniqueness value, epistemic value and economic value. The adoption index has been defined as the degree to which a person has formulated conscious plans specified behavior. Measurement items of these variables were adopted through established scales. Seven research hypotheses were formulated in the study. A survey was conducted for mobile phone users in the Central Province of Sri Lanka. Data were collected from a sample of 522 adult mobile phone users using the multistage random sampling. Data analysis included three phases. The first phase included a descriptive analysis followed by the measurement model validation phase using Confirmatory Factor Analysis. The final phase of analysis included structural model validation using covariance-based structural equation modeling (CB-SEM). The findings of the study revealed differences in user’s readiness across different groups of demographic factors such as level of education, age and civil status. Strategies to increase the mobile data usage and offering more customized mobile packages were identified.
IMPACT OF USERS’ TECHNOLOGY READINESS AND PERCEIVED VALUE ON MOBILE PHONE ENABLED INTERNET USAGE IN THE CENTRAL PROVINCE OF SRI LANKA

A.M.A.S.M. Bandara

Postgraduate Institute of Agriculture, University of Peradeniya, Sri Lanka

ABSTRACT

The primary objective of this study was to investigate the impact of users’ technology readiness (TR) and perceived value (PV) on mobile phone enabled internet usage. User’s TR has been defined as the people’s propensity to embrace and use new technologies for goals at home and work and measured using the Technology Readiness Index2.0. Five dimensions of PV were used: Utilitarian value, Hedonic value, Uniqueness value, epistemic value and economic value. The adoption index has been defined as the degree to which a person has formulated conscious plans specified behavior. Measurement items of these variables were adopted through established scales. Seven research hypotheses were formulated in the study. A survey was conducted for mobile phone users in the Central Province of Sri Lanka. Data were collected from a sample of 522 adult mobile phone users using the multistage random sampling. Data analysis included three phases. The first phase included a descriptive analysis followed by the measurement model validation phase using Confirmatory Factor Analysis. The final phase of analysis included structural model validation using covariance-based structural equation modeling (CB-SEM). The findings of the study revealed differences in user’s readiness across different groups of demographic factors such as level of education, age and civil status. The adoption intention of mobile internet services indicated mediation effects on the effect of user’s adoption intention of mobile phone enabled internet services. Findings also revealed that the internet-variable effects proposed by the final structural model except the epistemic value on adoption intention were moderated by certain demographic factors. Strategies to increase the mobile data usage and offering more customized mobile packages were identified. Policy implications in considering the users’ level technology readiness to digitize the public services and the inefficiencies of using price as a controlling mechanism for mobile internet services have been discussed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>01</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>01</td>
</tr>
<tr>
<td>1.1. Aquatic Resources in Sri Lanka</td>
<td>01</td>
</tr>
<tr>
<td>1.2. Malwathu Oya</td>
<td>03</td>
</tr>
<tr>
<td>1.2.1. Natural Flow Regime of upper Malwathu Oya</td>
<td>04</td>
</tr>
<tr>
<td>1.2.2. Impacts on upper Malwathu Oya</td>
<td>05</td>
</tr>
<tr>
<td>1.3. Scope of the Study</td>
<td>08</td>
</tr>
<tr>
<td>1.4. Objectives of the Study</td>
<td>08</td>
</tr>
<tr>
<td>1.4.1. Main Objectives</td>
<td>08</td>
</tr>
<tr>
<td>1.4.2. Specific Objectives</td>
<td>08</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>09</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>09</td>
</tr>
<tr>
<td>2.1. Global Status of Water</td>
<td>09</td>
</tr>
<tr>
<td>2.2. Threats to Lentic and Loctic Waters</td>
<td>09</td>
</tr>
<tr>
<td>2.2.1. Lentic Aquatic Resources</td>
<td>11</td>
</tr>
</tbody>
</table>
2.2.2. Role of Fish in Aquatic Resources

CHAPTER 3
MATERIALS AND METHODS
3.1. Sampling Sites
3.2. Collection of water Samples

CHAPTER 4
RESULTS AND DISCUSSION
4.1. Seasonal Changes in Dissolved Oxygen
4.2. Collection of water Samples

CHAPTER 5
CONCLUSIONS

REFERENCES
APPENDICES
APPENDIX I Average monthly rainfall of upper Malwathu Oya
APPENDIX II Mean length and weight of fish used for arsenic and cadmium analysis
APPENDIX III Arsenic and cadmium analysis procedure
APPENDIX IV Publication I
APPENDIX V Publication II
LIST OF TABLES

Table 3.1. Effect of maturity of nodes on establishing aseptic culture

Table 3.2. Treatment codes for different establishment media from leave, axillary buds and shoot tips explants

Table 3.3. Treatment codes given to study the effect of different concentrations of PGRs on multiplication and elongation of in vitro shoots

Table 3.4. Treatment codes for different in vitro rooting media

Table 3.5. Treatment codes for different rooting media with varying hormonal concentrations of IBA and NAA in ½ MS with 40 g/L sucrose on filter paper bridge liquid media

Table 3.6. Effect of BAP concentrations in MS media on percentage explants induced shoot buds, mean length of shoot bud and mean no. of shoot buds from shoot tip and axillary bud explant
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Average paddy yield/productivity in Sri Lanka during 2012-2015</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Grain yield response of different restorers during Maha and Yala seasons</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Grain yield response of crosses during Maha and Yala Seasons</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Response of testers for the number of panicles/hill (NP/H) during Maha and Yala seasons</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Response of testers with restorers for number of panicle/hill</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Response of restorers for filled grain per panicle during Maha and Yala seasons</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Differential response of different cross combinations for no. of panicle per hill to different seasons</td>
<td>33</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Response of crosses for filled grain per panicle during Maha and Yala seasons</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Restorer x tester interaction effect for root volume (ml/hill) during Maha season</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Restorer x tester interaction effect for root volume (ml/hill) during Yala season</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate 3.1. Effect of explants on establishment of cultures on MS media supplemented with 1.0 mg/L BAP: callus culture from leave explants (a); shoot tip cultures (b); and axillary bud cultures 58

Plate 3.2. Growing axillary bud cultures (at 16 weeks) on basal MS media supplemented with (a); 0 BAP- AB1, (b); 1.0 mg/L BAP- AB2, (c); 2.0 mg/L BAP- AB3 59

Plate 3.3. Root regeneration from callus culture developed from leaf explant after 16 weeks of inoculation under dark (a-roots from half MS+ 1.0 mg/L+ 0.1 mg/L; b-roots from 1/4 MS+ 1.0 mg/L BAP+ 0.1 mg/L 2, 4-D; c-microscopic view (×100) of roots) 62

Plate 3.4. Elongation of shoots in MS media supplemented with 40 g/L of sucrose and 1.0 mg/L BAP and 0.1 mg/L IBA at; 20th week (a); at 24th week (b) at 28th week (c) and multiplication of shoots at the end of 20th week (d) and 24th week (e) 63

Plate 3.5. In vitro rooted plantlets in ½ MS media supplemented with 40 g/L sucrose and 0.5 mg/L IBA 65
CHAPTER 1

INTRODUCTION

1.1. Agricultural Extension

Agricultural extension can be defined as the entire set of organizations that support and facilitate people engaged in agricultural production to solve problems and to obtain information, skills, and technologies to improve their livelihoods and well-being (Birner et al., 2006).

The World Bank (1990) agrees that services must be provided in a fundamentally different way than in the past, emphasizing on a framework for agricultural service provision that might be effective under current circumstances in developing countries. This framework puts agricultural extension into a much broader context of a demand-led service market. Hence the term “advisory services” is used instead of “extension”, to include the many non-traditional tasks, such as market information, micro-finance and health issues.

1.1.1. Extension approaches

Agricultural extension services date back to the nineteenth century with the aims of increasing agricultural productivity and production in Sri Lanka. For research to be effective there must be an efficient mechanism whereby its findings can be used by the end users. The process of making research findings available is the function of extension. Accordingly, research produces innovations which are passed on to extension which in turn passes them to farmers (Metrick, 1993). Developing a
medium to exchange information is vital because it is necessary to integrate information from researchers, farmers and extension agents to be able to develop technologies that work.

The most common sterilizing agents used to disinfect the explants are sodium hypochlorite, calcium hypochlorite, hydrogen peroxides, bromine water, silver nitrate, mercuric chloride and antibiotics. Generally hypochlorite solutions are easy to obtain and use, and are most effective, which are the active ingredient in many commercially available domestic bleach solutions (Balian et al., 2008; Dudgeon et al., 2010). An initial pre-sterilization in ethanol (5-30 seconds) followed by 1-2 % sodium hypochlorite (10-15 minutes) is usually sufficient and effective for many tissues. Shaking the explant during sterilization procedure will obviously enhance the effectiveness of the process. After sterilizing the explants, they should be washed several times (5 times) in sterile distilled water for complete removal of sterilant. Normally waxy tissues are hydrophobic and addition of Tween-20 in sterilizing agents will enhance the sterilization. A wide range of disinfectants have been used for explant sterilization.

Based on the results presented in Table 3.6, for both explants, MS medium supplemented 1.0 mg/L BAP was found to be best in proliferating shoot buds (80.0 % and 86.0 % respectively).
Table 4.15. Effect of each natural compound among *Salmonella* isolates in broiler chicken at 10^6 CFU/g of meat contamination level

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Salmonella isolates1</th>
<th>(\text{S4})</th>
<th>(\text{S6})</th>
<th>(\text{S8})</th>
<th>(\text{S23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>4.85±0.07(^{a/N})</td>
<td>4.91±0.03(^{a/S})</td>
<td>4.86±0.05(^{a/V})</td>
<td>4.87±0.01(^{a/Z})</td>
</tr>
<tr>
<td>Cardamom</td>
<td></td>
<td>4.26±0.05(^{b/M})</td>
<td>4.31±0.03(^{b/P})</td>
<td>4.27±0.03(^{b/U})</td>
<td>4.27±0.03(^{b/X})</td>
</tr>
<tr>
<td>Nutmeg</td>
<td></td>
<td>3.91±0.05(^{c/L})</td>
<td>4.01±0.01(^{c/P})</td>
<td>3.89±0.05(^{c/T})</td>
<td>3.99±0.05(^{c/W})</td>
</tr>
<tr>
<td>Ginger</td>
<td></td>
<td>4.25±0.02(^{d/L})</td>
<td>3.99±0.03(^{d/P})</td>
<td>3.91±0.04(^{d/T})</td>
<td>3.95±0.02(^{d/W})</td>
</tr>
<tr>
<td>Garlic</td>
<td></td>
<td>3.88±0.02(^{e/L})</td>
<td>4.30±0.01(^{e/Q})</td>
<td>4.23±0.01(^{e/U})</td>
<td>4.23±0.01(^{e/Y})</td>
</tr>
<tr>
<td>Aloe vera</td>
<td></td>
<td>4.21±0.01(^{g/M})</td>
<td>4.39±0.02(^{g/Q})</td>
<td>3.88±0.03(^{g/T})</td>
<td>3.94±0.01(^{g/W})</td>
</tr>
<tr>
<td>Mace</td>
<td></td>
<td>4.34±0.02(^{h/M})</td>
<td>4.28±0.02(^{h/Q})</td>
<td>4.33±0.04(^{h/U})</td>
<td>4.37±0.02(^{h/Y})</td>
</tr>
</tbody>
</table>

1Number of survived Salmonella (Log CFU/g of meat) Values in same row with different superscripts (simple letters) are statistically significant different at 95% confident interval; Values in the same column under different subtitles with different superscripts (capital letters) are significantly different at 95% confident level.
Plate 3.4. Elongation of shoots in MS media supplemented with 40 g/L of sucrose and 1.0 mg/L BAP and 0.1 mg/L IBA at; 20th week (a), at 24th week (b), at 28th week (c), and multiplication of shoots at the end of 20th week (d), 24th week and 28th week (e and f)
Figure 5.3. Influence of rumen protected fat supplementation during early lactation on (a) Milk fat (b) Milk SNF (c) Milk protein and (d) Milk urea nitrogen (MUN) contents of tropical crossbred dairy cattle
REFERENCES

Adam, A.Z., Tajuddin, S.N., Sudmoon, R., Chaveerach, A., Abdullah, U.H.,
Mahat, M.N. and Mohamed, R. (2018). Chemical constituents and
toxicity effects of leaves from several agarwood tree species

Philadelphia, USA. Do not add space between references

Marcus, L., Prusky, D. and Jacoby, B. (1988). Purification and characterization of
avocado lipoxygenase. Phytochemistry [online] 27(2), 323-326. Available
at: https://doi.org/10.1016/0031-9422(88)83090-5 [Accessed 8 April
2015].

on nicotine content in callus cultures of burley tobacco alkaloid lines. Crop

London. 313-344.

of a metallated porphyrin complex using ferrous sulfate and investigating
its characteristics. Proceedings of the Peradeniya University International
Research Sessions, Sri Lanka, 19, 328.
Prevalence of Bovine Tuberculosis among Cattle and Buffaloes in the Central Province of Sri Lanka

Y.H.P.S.N. Kumara¹, A. Amarasinghe¹, P.G.A. Pushpakumara¹, H.M.S. Wasana², W.M.T.D. Rathnakumara³, G.A. Gunawardana³ and B. Alexander⁴

¹Department of Farm Animal Production and Health, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
²Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
³Division of Molecular Biology, Veterinary Research Institute, Gannoruwa, Sri Lanka.

ABSTRACT

The Bovine tuberculosis (bTB) is a chronic disease condition in dairy cattle and a proven global zoonosis. This study was designed to identify the prevalence of bTB in dairy cattle and buffaloes in the Central Province (CP) of Sri Lanka. Single Intradermal Comparative Cervical Tuberculin (SICCT) test was performed in 20 farms (n=616 cattle and buffaloes) in three districts (Nuwara Eliya; NE, Kandy; KN, and Matale; MT) in the CP. Out of the SICCT positive samples, randomly selected serum samples (n=33) of eight farms were subjected to the rapid antibody (Ab) test for further confirmation. Results were evaluated for different risk factors; age, sex, parity, body condition score (BCS), breed, herd origin, reproductive status, herd size, type of management, and duration of farm establishment. The prevalence of bTB among individual cattle and buffaloes was 22% with a 50% herd-level prevalence. In NE and KN, 34% and 19% of individuals showed positive reactions for SICCT, respectively, while all the individuals in MT were negative. There were significant statistical associations (P<0.05) were observed with the prevalence of bTB and BCS, breed, herd origin, and reproductive status; however, age, sex, parity, herd size, type of management, and duration of farm establishment were not statistically significant (P>0.05) with the prevalence of bTB. The conclusion is that, based on the SICCT test, the estimated prevalence of bTB in cattle and buffaloes in the central province of Sri Lanka is relatively high (>20%). The SICCT test could be recommended for the screening of the bTB in cattle and buffaloes in all regions of Sri Lanka to assess the island-wide prevalence of bTB, as this disease carries the risk of transmitting to humans and other susceptible animal species.
MICROPROPAGATION AND PRODUCTION OF AGARWOOD FRAGRANCE COMPOUNDS BY PLANT CELL CULTURES OF \textit{Gyrinops walla}

HEWA KAPUGE BUDDIKA SAMPATH CHAMARA

2017